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Abstract. An iterative convolution description of polymer conformations for short to 
intermediate length self-avoiding sequences is reported. The intrachain spatial distribution 
functions and the mean square end-to-end separation for such systems are in the closest 
reported agreement with Monte Carlo estimates, with which they are compared. The 
simplicity, versatility and quantitative accuracy of the model is emphasised, and applications 
to problems of physical and biophysical interest are indicated. 

The radius of gyration and the expansion of internal subsequences with respect to their 
end-to-end counterparts are also determined. 

1. Introduction 

Descriptions of self-interacting polymer sequences have been given on the basis of a 
variety of approaches ranging from exact enumerations on regular lattices, through 
diagrammatic and renormalisation techniques to direct machine simulations, both on 
and off lattices. Effort has been primarily directed at the determination of asymptotic 
properties of such sequences in the form of exponent representations as the number 
of steps N + CO, whilst relatively little attention has been given to the no less important 
description of short to intermediate length chains, particularly those characterised by 
a variety of intrachain stereochemical interactions, fixed bond angles, etc. External 
constraints such as boundaries, solvent effects, etc-precisely those features which 
characterise many systems of technological and biophysical interest, including tertiary 
structures in protein conformation and ligand-substrate interactions-are rarely 
investigated and, moreover, are not readily modelled other than by direct simulation. 

There is, then, considerable motivation in seeking a description of such systems 
which is substantially simpler than direct machine simulation, is versatile, yet is both 
quantitatively and qualitatively reliable and whose approximations are physically 
readily accessible. 

The principal quantities which characterise the conformations of the sequence are 
the inter-segmental spatial distributions Z (  r,,lN) between monomers i, j within the 
N-mer, and their associated moments ( R  2 ) ,  ($,)-the mean square intersegmental 
separation and radius of gyration, respectively. Since the general preoccupation in the 
literature is with asymptotically long sequences, little attention is paid to the iistribu- 
tions Z(ij1N) themselves. Here, however, we are concerned more with the detailed 
structure of the sequence, and indeed, the estimate of limiting exponents is beyond 
the scope of the present investigation. 
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We have previously reported some of these features based on a primitive version 
of the convolution approximation (Croxton 1979a, b, c). We now report an iterative 
approach which represents a substantial improvement upon the previous treatment, 
and offers a number of specific quantitative and qualitative advantages, particularly if 
the sequence is composed of different species. The present iterative approach brings 
the results into the closest reported coincidence with Monte Carlo estimates, also 
determined here, and this we regard as an important endorsement of the model. 

2. Theory 

The intrachain spatial correlation Z( iIlN) of segments (i, I )  within an isolated sequence 
may be expressed in terms of the propagation of such correlations through all possible 
indirect routes between the interacting pair of segments. Thus the diagrams represent 
the propagation of correlation between segments (i, I )  through one ( k ) ,  two ( j ,  k ) ,  . . . , 
intrachain segments. The straight bonds represent the Z-functions whilst the wiggly 
bonds represent the direct segment-segment interaction, H (  il)  = exp(-@( il)/ k T )  
where @( il) is the intersegmental potential. 

Unlike a bulk, homogeneous fluid, the mediating particles k ,  j etc are not equivalent, 
but instead depend sensitively upon their location within the sequence. Accordingly, 
we propose that the (i, I )  correlation develops in the mean field of these indirect 
correlations. Thus, denoting by M the formation of this mean over the allowable 
convolution products, as specified by the indices, we may write 

Z( iIlN) = H (  il) Z( iklN)Z( kIlN) dk  
= I  

N N  
+ H ( i l ) H ( i k ) H ( j I )  M M I{ z ( i j lN)Z( jk IN)Z(kI lN)  dk d j  

+. . . .  ( 1 )  

Equation (1)  essentially represents the defining relation for the intrachain correia- 
tion functions. It is an approximation in that a mean field representation of the 
remainder of the chain upon the interacting pair (i, I )  is introduced. For reasons we 
shall discuss later, we choose to adopt the geometric mean. 

The correlation between segments ( j ,  I )  may be formed by analogy with (1) as 

k # l . j j # k . l  
= 1  = 1  

Z( jIlN) = H (  j l )  fi Z(kIlN)Z(  kjlN) dk  
k # j , l  

+... (2) 
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where nk denotes the geometric mean of the k convolution integrals. Multiplying ( 2 )  
by H (  i f ) Z (  ijlN), integrating I d j  and forming the geometric mean I T j  gives 

The RHS of (3)  may be closely identified with the second and subsequent terms of ( l) ,  
whereupon we may write 

Z (  illN) - 2 H (  U )  fl Z( ik lN)Z(  k f l N )  dk. (4) 
k I 

The physical nature of the approximation in (4) is readily understood in terms of 
the neglect of H-bonds. We may designate the order of the route of propagation as 
the number of field points n or centres of integration involved in the connection of 
(i, I ) .  The number of H-bonds involved in a route of order n may easily be shown to 
be Z:=, ( n  - i ) ;  approximation is incurred in neglecting ( n  - 1) H-bonds at the nth 
order of propagation. We therefore anticipate that self-avoiding distributions will be 
collapsed with respect to their simulated counterpart. However, we also note that the 
range of the kth convolution product arising in the geometric mean, e.g. 

I Z (  iklN)Z( kjlN) dk ( 5 )  

will be / i  - kl + I  k - j l ,  which may substantially exceed the range of the internal section 
Ii - j l .  Nevertheless, the correct range of the geometric mean is ensured by the presence 
of terms of the form 

where 6- bonds represent sequential connection of adjacent segments. 
The long-range distributions ( 5 )  result in internal distributions shifted outwards 

towards larger separations. Whilst inspection of Monte Carlo simulations of internal 
distributions also show such an outward shift, it appears that the present approximation 
overestimates this aspect of the distribution, particularly at larger N when very long 
range convolutions (5) will arise. In consequence, we anticipate an overestimate of 
the second moment ( R k )  with increasing N. 

The formation of the geometric rather than the arithmetic mean of the convolution 
products has a simple physical interpretation as follows. If we express the component 
convolutions of II, in terms of a potential of mean force: 

exp( 9) = I Z (  iklN)Z( kllN) dk  

then formation of the geometric mean implies 

-@(if) 
kT 

Z( i l lN)  - exp - exp 

(7)  

where x k  denotes the arithmetic mean of the potentials of mean force developed within 
the sequence: an intuitively appealing result. No such simple interpretation appears 
possible on the basis of an arithmetic mean of the convolution products. Moreover, 
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the geometric mean ensures that Z(il1N) goes smoothly to zero at large rir, as it should, 
whilst for the arithmetic mean this will not generally be the case: indeed, the range 
of Z( illN) will substantially exceed Ii - I \ .  

Now, we may further write, to the present degree of approximation, 

Z( iklN) = 2H(  ik) n Z( illN)Z( IklN) d l  
I I 

Z( kllN) = 2H( k l )  Z( kilN)Z( i f lN)  d i  . 

Inserting (8) in (4) we obtain 

Z( i l \N)  = aH(i l )  n H (  i k ) n  Z (  illN)Z( l k ) N )  d l H (  k l )  n 1 Z (  k i \ N ) Z ( i l \ N )  d i  dk  

(9) 
I k I , I  

where the numerical factor on the RHS of (9) has been replaced by the constant a :  
the distribution Z ( i l ( N )  has to be subsequently normalised, and the value of a is 
arbitrary for present purposes. 

Equation (9) is, of course, nothing other than a once-iterated form of equation 
(4);  the equation could be further refined by repeated insertions of the form (8) for 
the convolution integrals. However, our objective is simplicity, and our primary 
intention of casting equation (1) into iterative form has been achieved. For, subject 
to initial guesses for the various internal distributions, equation (9) may be solved 
iteratively. Either rectangular functions of the appropriate range, or previously 
determined distributions from the ( N -  1)th sequence may be used. Convergence is 
somewhat more rapid in the latter case, taking only four or five iterations whilst the 
choice of rectangular functions tends to yield convergence after about eight or ten 
iterations. In all cases the converged distribution is essentially independent of the 
initial choice, and fast Fourier transform techniques may be used in their evaluation. 

Finally, we should point out that more realistic systems embodying steric effects, 
fixed bond angles, variable bond lengths, etc are readily incorporated in this model, 
simply by specifying the various @(i, I ) .  For example, to fix the bond angle between 
segments i - 1, i, i + 1, one needs only to specify the distance Rl-l , l+l  and introduce 
the interaction 

@(i-1, i + l ) = + c o  r1-1.1+1+ R1-1,1+1 

= O  =R1-1,1+, ( loa)  

whilst to introduce a harmonic interaction between sequential segments, the Sl,r+l bond 
introduced earlier needs only to be replaced by 

( l o b )  

where rt[l+l is the equilibrium separation of sequential segments i, i +  1, and kl , ,+l  is 
the appropriate bond constant. 

Here, however, we restrict ourselves to the investigation of the model for the 
simplest of systems, a perfectly flexible hard sphere sequence. Unless the analysis can 
adequately describe such a system, discussion of more exotic systems is obviously 
unwarranted. 

@(i, i +  1) = k,,l+l(rl , l+l - r?,1+1)2 
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3. Results 

Throughout, comparison of the calculated quantities determined on the basis of the 
distributions (9) is made with Monte Carlo simulations of the corresponding hard 
sphere self-avoiding sequences. 

Briefly, the Monte Carlo technique adopted in these investigations consisted in the 
sequential addition of hard sphere segments of unit diameter, uniformly distributed 
about the centre of the preceding sphere. If the generated sequence embodied no 
violations of the excluded volume condition (no geometric overlap of segments), the 
chain conformation was accepted. If the excluded volume condition was violated, the 
entire sequence was rejected, and the sequential development of a self-avoiding system 
started anew. In the specification of an N-mer it is nor correct to salvage an initial 
trial sequence embodying no violations and to repetitively attempt trial extensions 
until successful, since this implies independence of the initial sequence upon subsequent 
extensions. 

In figure 1 we compare the second moment of the distribution 

(R:~)=477 {omz(lNIN)rtN drlN (11) 

(random walk (R:N) = N- 1) 

determined on the basis of the iterative convolution approach with the Monte Carlo 
result ( l o6  successful configurations per chain). Also shown are estimates based on 
the arithmetic (rather than geometric) mean, Curro’s estimate based on the Percus- 
Yevick approximation, and the previously reported (Croxton 1979a) (non-iterative) 
convolution approximation. The present approximation clearly provides the best 

N 

Figure 1. The mean square end-to-end distance (R:N)  as a function of chain length on 
the basis of various approximations and compared with the Monte Carlo estimate. (a) 
Percus-Yevick (Curro), (b) geometric convolution, (c) arithmetic convolution, (d)  Monte 
Carlo, (e) non-iterative convolution, ( f )  random walk. 
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representation yet of ( R : N )  for short to intermediate length sequences ( N S  20), 
crossing the Monte Carlo curve at N = 15. Below N = 15, (R;) is slightly under- 
estimated, undoubtedly due to the partial neglect of exclusion processes, whilst above 
this value the details of the convolution product probably imply more extended 
configurations than is truly the case, as discussed earlier, resulting in an over-estimate 
of (R:N).  This suggestion is supported by a direct comparison of Z(1NIN) for N = 10 
(figure 2) with its Monte Carlo counterpart. We see quite clearly that for small r l , lo  
the calculated distribution is collapsed into the origin, undoubtedly attributable to the 
under-estimate of exclusion processes operating within the sequence. At larger rl, lo,  
however, we note that the tail of the calculated distribution is sustained beyond its 
Monte Carlo counterpart with an associated over-estimate of (R $,,) as N increases. 
It is apparent from figure 1 that the arithmetic estimate of (R:N)  is in closer agreement 
with the Monte Carlo result than the geometric mean. The internal spatial distribution 
Z( ijlN) determined on the arithmetic basis is quantitatively inferior to the geometric 
estimate, despite yielding a better ( R f N ) .  Since we are not simply concerned with the 
moments of the distributions, but also with the distributions themselves, we choose to 
adopt the geometric mean. 

r-----3 18 

I " " "  " " 1  
14-  

- 1 0 -  

6 -  

2 -  

2 6 10 14 18 
r1,10 N 

Figure 2. The spatial end-to-end probability distribution Figure 3. The radius of gyration (Si . )  as a 
Z(1,lO) for a sequence of ten self-avoiding hard sphere function of chain length on the basis of 
segments (Percus-Yevick (Curro), broken curve; geometric various approximations. (Crosses, Monte 
convolution, full curve). The Monte Carlo estimate is also Carlo; open circles, geometric convol- 
shown (crosses). ution; full curve, random walk.) 

Incidentally, it is not appropriate to compare our numerical estimates of 
with the earlier MC data of Bruns (1977), since we believe the 'dimerisation' technique 
adopted thereip to be incorrect. In that treatment randomly selected sequences of 
eight segments are 'dimerised' (provided there are no geometric violations) to yield 
sequences of integral multiples of 8-mer. Clearly, (R :,d for example, remains identical 
to its isolated end-to-end value, even in its multiply dimerised form. 

All internal distributions Z (  ijlN)( i # j # 1, N )  are determined in the course of 
numerical evaluation of (9) from which the internal second moments (R$, may be 
calculated. We find the subsequence of segments l i - j (  within the N-mer is generally 
expanded with respect to an isolated sequence of l i - j (  segments, in agreement with 
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previous investigations (Croxton 1979b, Redner 1980). Moreover, we find this con- 
clusion is confirmed by Monte Carlo simulation. A particularly sensitive test of the 
accuracy of the internal distributions and their associated moments is provided by 
calculating the mean square radius of gyration (SL) of the chain, where 

which may be compared directly with the random walk result 

( S 2 , )  = f (N+  1). (13) 

We see from figure 3 that the geometric convolution estimate of (Sk) on the basis of 
equation (12) is in very good agreement with the Monte Carlo data-a particularly 
important result since the radius of gyration is experimentally accessible through light 
scattering studies. 

Whilst this iterative version yields a substantial quantitative improvement upon the 
previous convolution approximation, the model retains its simplicity and versatility. 
Boundary effects (on the basis of the previous approximation) have been investigated 
by allowing the diameter of the first segment + CO (Croxton 1983), whilst the ith bond 
angle may be fixed by applying 8-function bonds between segments i - 1 ,  i + 1. Any 
central, pairwise interaction may be specified between any given pair of segments, 
whose diameters may also be regarded as parameters of the sequence. 
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